Ebook Gratuit Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake
Lorsque vous avez lu plusieurs pages, vous savez certainement de plus en plus à nouveau. En outre, lorsque vous avez effectivement examiné tous fini. C'est votre temps de toujours garder à l'esprit et aussi faire tout ce que la leçon ainsi que l'expérience de ce livre vous est fourni. Par ce problème, vous devez savoir que chaque publication PAPA diverses méthodes pour offrir l'impression à tout type de visiteurs. Pourtant, ils seront et devraient aussi être. C'est ce que le DDD vous offre toujours la leçon concernant.
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake
Ebook Gratuit Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake
Bienvenue sur notre site magnifique. Ceci est un site Internet qui peut rendre tout le monde se sent vraiment si heureux. C'est celui qui offrira certainement toutes les collections de livres disputaient des auteurs du monde entier. Localisation Guide de diverses autres nations dans ce sit est simple, en outre trouver les livres pour l'intérieur de la nation. Ce sera si simple après.
L'examen est de nature ont à faire sur une base quotidienne. Comme ce que vous faites vos activités quotidiennes, de consommer ou faire vos tâches au jour le jour. En plus maintenant, pourquoi devrait lire? La lecture, encore une fois, peut vous aider à découvrir de manière flambant neuf où vous rendre à la vie beaucoup mieux. Ce n'est pas ce que vous appelez l'obligation. Vous pouvez lire Quantum Signatures Of Chaos. : 2nd Edition, By Fritz Haake dans le temps supplémentaire que des activités supplémentaires. Il ne sera certainement pas aussi vous oblige à le lire pour beaucoup de pages Web. Juste, par étapes et vous pouvez voir à quel point ce livre est intéressant.
Cette publication utilise pas le tri du livre normal. Il va certainement vous offrir le très facile par vérifier. Ainsi, il ne sera certainement pas vous acheter sentir comme la recherche des guides pour l'examen demain. Voilà pourquoi nous appelons comme l'étape par étape la lecture. Vous ne pouvez avoir qu'un examen Quantum Signatures Of Chaos. : 2nd Edition, By Fritz Haake dans le temps supplémentaire lorsque vous êtes quelque part. Cette publication sera certainement de même non seulement vous fournir les inspirations, quelques mots à inclure vous offrir encore peu de divertissement. Il est juste ce qui rend ce livre vient d'être très cher pour vérifier par beaucoup de gens dans ce monde.
Pour vérifier Quantum Signatures Of Chaos. : 2nd Edition, By Fritz Haake, vous ne pouviez pas faire des méthodes compliquées. À cette époque, la publication en ligne est offert ici. Voir cette page web vient d'être le starter pour vous de trouver ce livre. Pourquoi? Nous offrons ce genre de publication dans la liste, parmi les milliers de collections de livres à découvrir. Dans cette page web, vous localisera certainement le lien web de ce livre à télécharger. Vous pouvez suivre le livre dans ce lien web. Donc, quand vous vraiment besoin de cette publication le plus tôt possible, suivi exactement ce que nous avons informé pour vous ci-dessous.
Détails sur le produit
Relié: 504 pages
Editeur : Springer-Verlag Berlin and Heidelberg GmbH & Co. K; Édition : 2nd Revised edition (1 janvier 2001)
Collection : Springer series in synergetics
Langue : Anglais
ISBN-10: 3540677232
ISBN-13: 978-3540677239
Dimensions du produit:
15,6 x 2,7 x 23,4 cm
Moyenne des commentaires client :
Soyez la première personne à écrire un commentaire sur cet article
Classement des meilleures ventes d'Amazon:
2.572.257 en Livres (Voir les 100 premiers en Livres)
The quantization of classical physical systems whose dynamics is regular or `integrable' is fairly well understood. In fact such systems were thought to be of predominant interest until the discovery of chaotic dynamics back in the early 1970's. The presence of chaos in classical systems is fairly well characterized, and so the natural thing to ask is to what extent this chaotic behavior is preserved when quantizing these systems. The quantization of classical chaotic systems is frequently described as `quantum chaos' although there are some researchers who believe that this designation should be reserved to efforts for characterizing when an actual quantum system could exhibit behavior that is similar to that which occurs in classical chaotic systems. This book exemplifies an approach to quantum chaos that is a mixture of these two outlooks, as it attempts to summarize the tools for studying the `signature' of quantum effects on classical chaos. Ideally, this signature is a collection of criteria that would reduce to the criteria used to characterize classical chaos when Planck's constant approaches zero. The author discusses various approaches to obtaining a "quantum signature" of classical chaos, some of these being techniques drawn from other fields of physics, such as nuclear and condensed matter physics. There are some interesting issues that arise in this book from a mathematical standpoint, such as connections of quantum chaos with the zeros of the Riemann zeta function, but the author refrains from an in-depth discussion because of lack of space.The book is a fairly comprehensive treatment, and space prohibits a detailed review, but some of the main topics or issues of interest include the following:Unitarity of the quantum time evolution of state vectors. In quantum physics, the time evolution of state vectors is represented by an evolution operator that is unitary, which means that for a given Hamiltonian, the distance between two state vectors is preserved under time evolution. This rules out any notion of `sensitive dependence on initial conditions' as is the case in classical chaotic systems. The author though argues for an alternative notion that views quantum dynamics as being dependent on a control parameter. Thus one speaks of the sensitivity to the dynamics that is under the direction of the control parameter. Two states evolving from the same initial state but having slightly different values of the control parameter may have radically different behavior, depending on where the initial state is located (in either the regular or classically chaotic region). Quantum chaos in this view is a kind of measure of "mobility" of the state vectors under slight changes of dynamics (control parameter(s)).The Ehrenfest time and the correspondence principle Interestingly, the author seems not to worry too much about the issues with the Ehrenfest time that other researchers do. For regular systems the Ehrenfest time is long enough to not cause worry when comparing classical dynamics with the time evolution of quantum expectation values. For chaotic classical systems though the Ehrenfest time can be much shorter, and so the correspondence principle seems to be problematic for the quantization of classical chaotic systems. The main issue of the Ehrenfest time for the author arises in the validity of the "diagonal" approximation for the short-time form factor in the Gutzwiller semiclassical theory of periodic orbits. In that discussion the Ehrenfest time gives an estimate for the limiting time above which the diagonal approximation fails (due to constructive interference between the periodic orbits). The Ehrenfest time is to be contrasted with the `Heisenberg time', which is the time needed to resolve the discreteness of the quasi-energy spectrum, and which, as the author remarks, gives an optimistic estimate for the range of validity of the diagonal approximation. The Ehrenfest time is proportional to the logarithm of Planck's constant while the Heisenberg time is proportional to the inverse of Planck's constant. Thus the Ehrenfest time is considerably shorter than the Heisenberg time.Quantum localization One way of understanding quantum localization is to examine the opposite situation, where the states are "spread out" and the probability amplitudes are the same everywhere up to a change of phase. Such is the situation for example for an electron in a periodic potential, where the states of the electron are the famous `Bloch states.' As is well known, the electron is viewed as a wave that is spread out through the whole solid. Localization then is the case where the wave function of the electron has most of its "support" on a given location, and thus the probability amplitude decays rapidly with increasing distance from this location. Intuitively, one would expect that this would be the case where the perfect periodic lattice is disrupted by the presence of an impurity. This intuition is verified by calculation, with one of the well-known examples being that of `Anderson localization'. The main example studied in this book is that of the `periodically kicked rotator', whose quasi-energy eigenfunctions are localized in the angular momentum representation. But as it turns out, and this is studied in detail in the book, the kicked rotator is related to the Anderson model. This relation is established by considering the eigenvalue problem for the Floquet operator of the kicked rotator. The resulting algebraic equation for the eigenfunctions in the momentum representation has the form of the Schroedinger equation for a particle in a one-dimensional lattice of pseudorandom potentials (in the strict Anderson model these potentials are random). The author is careful to note that a rigorous proof of localization for the kicked rotator has not been accomplished, but that numerical evidence points to an equivalence between the Anderson model and the kicked rotator. And to make the case that not every periodically kicked system will display localization, the author discusses the `kicked top.'Random matricesThe topic of random matrices has generated a lot of excitement in the mathematical community in recent years due to a possible connection (and resolution) of the Riemann conjecture. In this book, the role of random matrices arises in the discussion of the presence of universality in the local fluctuations in the quasi-energy spectra of classical systems that display global chaos. Random matrices come into play when analyzing the level dynamics of a classical Hamiltonian flow in a manner that is similar to what is done in ordinary equilibrium statistical mechanics.
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake PDF
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake EPub
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake Doc
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake iBooks
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake rtf
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake Mobipocket
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake Kindle
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake PDF
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake PDF
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake PDF
Quantum Signatures of Chaos. : 2nd Edition, by Fritz Haake PDF